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Abstract
We introduce Variational State-Space Filters (VSSF), a new method for unsupervised learning,
identification, and filtering of latent Markov state space models from raw pixels. We present a
theoretically sound framework for latent state space inference under heterogeneous sensor config-
urations. The resulting model can integrate an arbitrary subset of the sensor measurements used
during training, enabling the learning of semi-supervised state representations, thus enforcing that
certain components of the learned latent state space to agree with interpretable measurements. From
this framework we derive L-VSSF, an explicit instantiation of this model with linear latent dynam-
ics and Gaussian distribution parameterizations. We experimentally demonstrate L-VSSF’s ability
to filter in latent space beyond the sequence length of the training dataset across several different
test environments.

1. Introduction

Representation learning is central to many difficult machine learning problems. Uncovering low
dimensional embeddings of high dimensional data enables novel reasoning about generative pro-
cesses, data compression (Theis et al., 2017), and probabilistic forecasting (Ibrahim et al., 2021).
Recent results in computer vision and natural language processing have demonstrated the effec-
tiveness of large-scale generative models across difficult image (Yu et al., 2020; Zhang and Maire,
2020) and language (Devlin et al., 2018) tasks.

Contemporary generative representation learning techniques based on Variational Autoencoders
(VAEs) (Kingma and Welling, 2014; Rezende et al., 2014) and Generative Adversarial Networks
(GANs) (Goodfellow et al., 2014) are capable of generating high fidelity and realistic looking still
images by leveraging powerful latent representations (van den Oord et al., 2017). Recent work
using VAEs on video data and has shown the ability to predict future frames, (Babaeizadeh et al.,
2017; Denton and Fergus, 2018) learn self-supervised representations of 3D structure (Lai et al.,
2021), and enable compression ratios comparable to classical video codecs (Pessoa et al., 2020). In
this paper we investigate the related problem of finding low dimensional embeddings suitable for
control given pixel data and auxiliary low-dimensional (traditional) sensor measurements.

Applying deep representation learning techniques, specifically VAEs, to state space represen-
tations was investigated by Watter et al. (2015) and Krishnan et al. (2015), wherein a latent state
embedding and locally linear latent state dynamics are jointly learned. More recent works such
as Robust Controllable Embeddings (Banijamali et al., 2018), PlaNet (Hafner et al., 2019), Deep
Variational Bayes Filters (Karl et al., 2017), Dream to Control (Hafner et al., 2020), Deep Kalman
Smoother (DKS) (Krishnan et al., 2015), and Online Variational Filtering (OVF) (Campbell et al.,
2021), have extended these techniques to more challenging systems with nonlinear dynamics and
partial observability. These methods have several key limitations. With the exception of DKS and
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OVF, these techniques either assume Markovian observation sequences (Watter et al., 2015; Banija-
mali et al., 2018) or use amortized posterior approximations, where smoothing variational posteriors
are only partially conditioned on future measurements (Karl et al., 2017; Hafner et al., 2019; Lee
et al., 2019; Hafner et al., 2020). In the latter case, these approximations have been shown by
Bayer et al. (2021) to compromise the resulting the generative model, introducing a conditioning
gap suboptimality, while methods assuming Markovian observation sequences must batch several
images together in order to infer otherwise hidden state, such as velocity. In either case, these struc-
tural limitations mean these methods are inherently not capable of modelling the proper filtering
posteriors.

In this work we apply variational inference techniques to learn a dynamics-consistent model
for filtering in a low dimensional latent state space. Since we additionally have access to the full
smoothing distribution, we can both model hidden system state and do not have to partially con-
dition our inference distribution. Paired with suitably powerful neural network architectures, we
demonstrate the ability of our method to infer dynamics-consistent filtering models using only im-
age data, as well as integrate information from different sensor modalities simultaneously. Although
we only discuss inference on state spaces with linear dynamics in this paper, the method we present
is applicable to any system where closed-form filtering priors and inverse dynamics models can be
computed.

2. Related Work

Prior work in deep stochastic video generation and prediction methods such as (Babaeizadeh et al.,
2017; Denton and Fergus, 2018; Lee et al., 2019), differ subtly from the state space learning prob-
lem we consider in this paper. Video generation methods seek to model p(xT |x1:T−1), where x1:T is
a sequence of T video frames. By contrast, learned state space models are concerned with the infer-
ence distribution p(z1:T |x1:T , u1:T−1) for some latent state z1:T and control input u1:T−1. Whereas
video generation models are free to pick an arbitrary latent state representation (e.g Babaeizadeh
et al. (2017) use one latent state z across all frames x1:T ), state-space models are generally not free
to do so.

Current deep variational state space learning methods can be broadly categorized into two
classes: those that assume Markovian observation sequences (Watter et al., 2015; Banijamali et al.,
2018), and those that allow for hidden state (Hafner et al., 2019; Karl et al., 2017). An observation
sequence can generally be made Markovian by batching multiple image observations together, as
done in (Watter et al., 2015; Banijamali et al., 2018). While this approach allows for models to
only consider pairwise inference across temporally neighboring latent states zt and zt+1, it requires
the mapping from latent state zt to measurement xt to be deterministic in order to preserve the
Markovian assumption. This significant limitation has prompted work (Krishnan et al., 2015, 2016;
Hafner et al., 2019; Bayer et al., 2021) into learning latent state spaces with both stochasticity and
partial observability.

Learning latent state spaces with partial observability requires the challenging task of learn-
ing the entire conditional latent state trajectory distribution p(z1:T |x1:T , u1:T−1). PlaNet (Hafner
et al., 2019) and related models (Hafner et al., 2020; Lee et al., 2019) impose the factorization
p(z1:T |x1:T , u1:T−1) =

∏T
t=1 p(zt|zt−1, xt, ut−1). This effectively approximates the smoothing

posterior p(zt|x1:T , u1:T−1) by the filtering posterior p(zt|x1:t, u1:t−1), incurring the conditioning
gap suboptimality described in Bayer et al. (2021). The alternative approach taken by Krishnan et al.
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Figure 1: Different latent model designs. Solid connections indicate the generative process, while dashed
lines indicate the effective inference model for the future state z2. Note (a) in Banijamali et al. (2018)
(RCE Model), both z1 and z2 are inferred using a deterministic reverse transition (b) in Hafner et al. (2019)
(PlaNet), there are no dependencies on future measurements x3 or input u2 when sampling z2. Like Campbell
et al. (2021) (OVF), our model (c) contains these dependencies but still enables access to the correct filtering
distribution, unlike Krishnan et al. (2016) (DKS)

(2016) in DKS is to factor the distribution as p(z1:T |x1:T , u1:T−1) =
∏T
t=1 p(zt|zt−1, ut−1:T , xt:T ).

However, DKS has the significant drawback that estimating zt requires access to all future measure-
ments xt:T as well as inputs ut:T and so does not provide access to a filtering distribution p(zt|x1:t).
In contrast to these aforementioned works, we use a decomposition for the full smoothing posterior
of a partially observable state space model that allows for variational inference using the proper
smoothing distribution at training time, but that also enables access to a filtering distribution suit-
able for use in real-time systems. The same smoothing decomposition is proposed in the concurrent
work Campbell et al. (2021), but we make the additional step of showing a closed form of the back-
wards smoothing distribution can be found, enabling simpler inference. The conceptual difference
between these frameworks is illustrated in Fig. 1.

3. Problem Formulation

Consider the stochastic dynamics given by the following Markov state space model

z1 ∼ pθ(z1), zt+1 ∼ pψ(zt+1|zt, ut) (1)

with state zt, input ut, generative parameters θ and transition dynamics parameters ψ.
At each time step t, the system emits a set of k conditionally-independent observations Xt =

{x(j)t }kj=1 where

x
(j)
t ∼ pθ(x

(j)
t |zt). (2)

The sensing modality can be different for each observation x(j), e.g., one observation could be
an image obtained from a camera, and another a measurement obtained from an accelerometer.
Further, in contrast to Watter et al. (2015) and related models, we do not require the latent state zt
to be inferrable from Xt, i.e., our state space model is only partially observable.

Our framework also allows for arbitrary subsets of training sensing modalities to be deployed at
test time. For example, suppose that training data is collected using both a motion capture system
as well as images from a camera. Both the motion capture system and the camera data can be used
during training, but the motion capture measurements can be omitted during testing.
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Our goal is to learn both the parameters for the generative model θ as well as the system
dynamics ψ. Formally, define X1:T := {X1,X2, . . . ,XT } and u1:T−1 := {u1, u2, . . . , uT−1}
to be the T -length trajectories of measurements and control inputs, respectively. Given a set
D = {(X (i)

1:T , u
(i)
1:T−1)}ni=1 of n independent input-observation trajectories of length T sampled

from the true data-generating distribution pD(D)1, we wish to find the maximum a posteriori esti-
mate (MAP) for θ, ψ given by

θ̂, ψ̂ := argmax
θ,ψ

p(θ, ψ|D) = argmax
θ,ψ

p(DX |ψ, θ,Du),

under a uniform prior p(θ, ψ) on the model parameters, and where have let DX := {X (i)
1:T }ni=1 and

Du := {u(i)1:T−1}ni=1. Note that by independence of trajectories in the data set, the MAP estimate is

equivalent to maximizing 1
n

∑n
i=1 log pθ,ψ(X

(i)
1:T |u

(i)
1:T−1). To tackle this otherwise intractable opti-

mization problem, we leverage variational inference techniques from Kingma and Welling (2014);
Rezende et al. (2014) to introduce a variational approximation distribution qϕ,ψ(z1:T |X1:T , u1:T−1)
with inference parameters given by ϕ. Following Kingma and Welling (2014), the resulting evidence-
based lower bound (ELBO) is

L(ϕ, θ, ψ,X1:T , u1:T−1) = log pθ,ψ(X1:T |u1:T−1)−G

= −DKL(qϕ,ψ(z1:T |X1:T , u1:T−1)||pθ,ψ(z1:T |u1:T−1)))

+ Eqϕ,ψ(z1:T |X1:T ,u1:T−1)[log pθ,ψ(X1:T |z1:T )], (3)

where G = DKL(qϕ,ψ(z1:T |X1:T , u1:T−1)||pθ,ψ(z1:T |X1:T , u1:T−1))) is the gap between the ELBO
and the true log-likelihood of the generative conditional distribution.

Maximizing the ELBO is therefore equivalent to solving the original MAP parameter estimation
problem under the following assumption.

Assumption 3.1 The parametrization of the generating posterior pθ,ψ(X1:T |z1:T , u1:T−1) is suffi-
ciently rich such that for optimal θ̂, ψ̂ and true data-generating distribution pD(X1:T )

pD(X1:T ) = pθ̂,ψ̂(X1:T ),

i.e., the true data-generating distribution can be feasibly modelled by our chosen parameterization.
Additionally, the optimal variational posterior qϕ,ψ(z1:T |X1:T , u1:T−1) is sufficiently rich such that

ess sup
(X ,u)∼pD

DKL(qϕ̂,ψ̂(z1:T |X1:T , u1:T−1)||pθ̂,ψ̂(z1:T |X1:T , u1:T−1))) = 0,

i.e., the gap between the lower bound and the true model log-likelihood can be driven to zero for
the MAP estimate of θ, ψ.

These two conditions imply that (a) the inferred latent state distribution prior qϕ̂(zt) =∫
qϕ̂(zt|Xt)pD(Xt)dXt is equivalent to pθ̂(zt) for all t, and (b) because the evidence lower bound

is tight for the MAP parameter estimate, maximizing the lower bound is equivalent to solving the
MAP optimization problem. While this is a very restrictive assumption, this is only used to show
the correctness of subsequent problem simplifications in Section 4.1. Note that in practice it is suf-
ficient for these conditions to be approximately satisfied in order to obtain good performing models.
We leave the problem of quantifying the effect of approximately satisfying Assumption 3.1 on the
resulting model degradation to future work.

1. We use the notation pD(X) to denote the distribution of X as drawn from the true data generating distribution.
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3.1. Smoothing Inference

We now propose a factorization of the full smoothing posterior qϕ,ψ(z1:T |X1:T , u1:T−1) in terms of
the observation inference model qϕ(zt|X

(j)
t ), state prior pθ(zt), and transition model pψ(zt+1|zt, ut),

by leveraging the joint distribution smoothing decomposition used in Campbell et al. (2021); Briers
et al. (2010). Rather than adopting a forward factorization of the smoothing posterior given by
qϕ,ψ(z1:T |X1:T , u1:T−1), wherein the current latent state zt is dependent on the previous latent state
zt−1, we instead model the backwards in time dependency of zt on zt+1 using the decomposition

qϕ,ψ(zt|zt+1,X1:t, u1:t) ∝ qψ(zt+1|zt, ut)qϕ,ψ(zt|X1:t, u1:t−1). (4)

Therefore given a latent state zt+1, the distribution over the previous latent state zt can be found by:
(i) computing the filtering posterior qϕ,ψ(zt|X1:t, u1:t−1), (ii) finding a closed form for the transition
distribution qψ(zt+1|zt, ut) = pψ(zt+1|zt, ut) as a function zt, and (iii) taking the product of the
densities. In particular, for linear dynamics and Gaussian distribution setting we consider in §4,
all of these steps admit closed-form expressions. Furthermore because the full smoothing posterior
factors as the product

qϕ,ψ(z1:T |X1:T , u1:T−1) = qϕ,ψ(zT |X1:T , u1:T−1)
T−1∏
t=1

qϕ,ψ(zt|zt+1,X1:t, u1:t), (5)

the samples and associated likelihoods for qϕ,ψ(z1:T |X1:T , u1:T−1) can be efficiently computed re-
cursively by first sampling the final latent state zT from the marginal qϕ,ψ(zT |X1:T , u1:T−1), and
then recursively sampling from the corresponding marginals q(zt|zt+1, ·) for t = T − 1, T − 2, . . . 1.

Sampling from qϕ,ψ(z1:T |X1:T , u1:T−1) is therefore a two-pass algorithm. We first perform a
forward pass to compute the filtering posteriors qϕ,ψ(zt|X1:t, u1:t−1) using the standard propagation
and update recursions (Tanizaki, 1996)

qϕ,ψ(zt|X1:t−1, u1:t−1) =

∫
qψ(zt|zt−1, ut−1)qϕ(zt−1|X1:t−1, u1:t−2)dzt−1, (6)

qϕ,ψ(zt|X1:t, u1:t−1) ∝ qϕ,ψ(zt, |X1:t−1, u1:t−1)
k∏
j=1

qϕ(zt|x
(j)
t )

qϕ,ψ(zt)
. (7)

Then we perform a backwards pass to sample a (backwards) trajectory zT :1 using equations (4)
and (5). This two-pass approach to sampling z1:T is visualized in Figure 2. Modelling the distri-
bution qϕ,ψ(zt) needed for the marginal posterior qϕ,ψ(zt|X1:t, u1:t−1) is generally intractable, but
Assumption 3.1 allows setting qϕ,ψ(zt) = pθ(zt) without affecting the correctness of the result-
ing model given proper parameterizations (see §A.3, as well as the conditions required for proper
inference of per-observation qϕ(zt|x

(j)
t ) discussed in §A.4).

With this sampling procedure, we can compute a Monte-carlo approximation for the KL term
DKL(qϕ,ψ(z1:T |X1:T , u1:T−1)||pθ,ψ(z1:T |u1:T−1)) of the ELBO (3), as described in Kingma and
Welling (2014), as the prior log-likelihood factors as

log pθ,ψ(z1:T |u1:T−1) = log pθ(z1) +
T−1∑
t=1

log pψ(zt+1|zt, ut),

due to the Markov structure of the latent state. Similarly we can approximate the reconstruction term
Eqϕ,ψ(z1:T |X1:T ,u1:T−1)[log pθ,ψ(X1:T |z1:T )] of the ELBO (3) by leveraging conditional independence
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Figure 2: Visualization of the two-pass sampling approach for the smoothing posterior q(z1:T |X1:T , u1:T−1)
and corresponding reconstruction p(Xt|zt). The red boxes show the observation-updated distributions and
the grey boxes show the filtering-forwards/smoothing-backwards propagated distributions.

of the measurements x(j)t given the latent state zt:

log pθ,ψ(X1:T |z1:T ) =
T∑
t=1

k∑
j=1

log pθ,ψ(x
(j)
t |zt).

In the next section, we show that under suitable parameterizations of the dynamics pψ(zt+1|zt, ut),
generative model pθ(Xt|zt) and inference models qϕ(zt|Xt) we can efficiently maximize the ELBO
(3). Detailed derivations of the results presented in this section con be found in Appendix A.

4. Variational State Space Models with Linear Dynamics

We consider an instantiation of the above framework with linear dynamics and Gaussian distribu-
tions. The general approach presented above is independent of these choices, and any combination
of discrete or continuous latent variables with different distribution parameterizations can in princi-
ple be used for the latent state representation.

As a motivating example we consider the object tracking problem discussed in Section 3 where
the latent state may be partially measured through a secondary sensor such as an accelorometer. In
order to facilitate representation learning with partially known latent state, we will introduce two
distinct observation models: a nonlinear model suitable for image data, as well as a linear model
that can directly observe (subsets of) the latent state.

Consider a Markov state space model as described in Section 3, where the latent state zt ∈ Rm
and the system evolves according to linear dynamics of the form

z1 ∼ N (0,Σz), zt+1 = Azt +But + wt, wt
i.i.d.∼ N (0,Σw),

where the prior covariance Σz is fixed. The state space parameters (A,B,Σw) are treated either as
known parameters or consolidated into the unknown parameters ψ, depending on the problem setup.
We parameterize the measurement model qϕ(zt|x

(j)
t ) as a Gaussian such that under Assumption 3.1
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we have that

qϕ(zt|x
(j)
t )

qϕ,ψ(zt)
≈
qϕ(zt|x

(j)
t )

pθ(zt)
∝ N (h

(j)
t , H

(j)
t ), (8)

where h(j)t andH(j)
t are computed from x

(j)
t according to the model chosen for pθ(x

(j)
t |zt). We will

discuss parameterizations of h(j)t and H(j)
t for linear and nonlinear measurement models in §4.1.1

and §4.1.2.
Combining equation 8 with the linear dynamics model above, we find closed-form expres-

sions for the mean and covariances of the resulting Gaussian filtering prior qϕ,ψ(zt|X1:t−1, u1:t−1)
and filtering posterior qϕ,ψ(zt|X1:t, u1:t−1). Letting the filtering prior qϕ,ψ(zt|X1:t−1, u1:t−1) ∼
N (pt|t−1, Pt|t−1) and the filtering posterior qϕ,ψ(zt|X1:t, u1:t−1) ∼ N (pt|t, Pt|t), the priors can be
computed recursively using the standard Kalman filter propagation equations (Terejanu, 2009):

Pt|t−1 = APt−1|t−1A
⊤ +Σw, pt|t−1 = Apt−1|t−1 +But.

Similarly, the posterior N (pt|t, Pt|t) can be computed recursively in terms of the information matrix
P−1
t|t and information vector P−1

t|t pt|t using the Information Filter update equations (Terejanu, 2009):

P−1
t|t = P−1

t|t−1 +
k∑
j=1

(H
(j)
t )−1, P−1

t|t pt|t = P−1
t|t−1pt|t−1 +

k∑
j=1

(H
(j)
t )−1h

(j)
t .

The use of the Information filter update as opposed to the standard state-space based update allows
for easy simultaneous fusion of information from multiple observations. The reverse smoothing dis-
tribution qϕ,ψ(zt|zt+1,X1:t, u1:T−1) = N (ℓt, Lt) can likewise be computed in terms of the filtering
posterior N (Pt|t, pt|t) and next state zt+1

L−1
t = P−1

t|t +A⊤Σ−1
w A, L−1

t ℓt = A⊤Σ−1
w (P−1

t|t −But) + P−1
t|t pt|t.

We will now discuss different observation models for qϕ(zt|x
(j)
t )

pθ(zt)
∝ N (h

(j)
t , H

(j)
t ) and pθ(x

(j)
t |zt)

that can be used within this framework.

4.1. Observation Models

We make the following simplifying assumption.

Assumption 4.1 The true underlying prior distribution pD(zt), state-conditional observation dis-
tribution pD(Xt|zt), and state inference distributions pD(zt|Xt) are time-invariant

Using time-varying prior pθ(zt) would require the state inference distribution qϕ(zt|Xt) to also
be time-varying. This is not only generally undesirable and computationally infeasible for large
neural networks, but the resulting model would not be usable for sequences over a horizon longer
than T , the horizon of the training data trajectories. Assumption 4.1 is satisfied, for example, if the
initial state pD(z1) is equal to the steady-state distribution of the closed-loop system from which the
data is generated and the observation model pD(Xt|zt) is identical for all t.

4.1.1. NONLINEAR OBSERVATION MODEL

To handle nonlinear and high-dimensional measurements x(j)t ∈ Rp such as raw pixel data, we intro-
duce a nonlinear observation model. In this case we parameterize the generative model pθ(x

(j)
t |zt)
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for nonlinear sensing modality j as pθ(x
(j)
t |zt) = N (ν(x

(j)
t ),Σx) for neural network-parameterized

mean ν(x(j)t ) and fixed covariance matrix Σx, 2 and with corresponding inference model qϕ(zt|x
(j)
t ) =

N (rh(x
(j)
t ), rH(x

(j)
t )), for neural network-parameterized mean function rh and positive definite

neural network-parameterized coveriance matrix rH . In Section 5 we discuss neural-network pa-
rameterizations of this model suitable for inference from image data, as well as how to parameterize
rH in order to enforce this constraint.

4.1.2. LINEAR OBSERVATION MODEL

Consider the standard linear measurement model where

x
(j)
t = C(j)zt + wx, wx

i.i.d.∼ N (0,Σx),

where C(j) ∈ Rp×nz , and p < nz , i.e., a noisy observation from a low-dimensional subspace of
the latent-state is measured. In this case a closed form for both pθ(x

(j)
t |zt) and pθ(zt|x

(j)
t ) can be

found, so the variational approximation qϕ(zt|x
(j)
t ) is not needed, and the posterior pθ(zt|x

(j)
t ) can

be used directly:

pθ(x
(j)
t |zt) ∼ N (C(j)zt,Σx), pθ(zt|x

(j)
t ) ∼ N (µ,Σ),

where Σ−1 = C⊤Σ−1
x C +Σ−1

z and Σ−1µ = C⊤Σ−1
x x

(j)
t .

Note that under Assumption 3.1 it follows that (H(j))−1 = C⊤Σ−1
x C and (H(j))−1h(j) =

C⊤Σ−1
x x

(j)
t , which correspond to the measurement information matrix/vector of a standard infor-

mation filter (Terejanu, 2009).
By fixing the appropriate sparse C(j) ∈ Rs×m and combining the linear observation model

with nonlinear observations, situations where the state is partially known or where a subset of the
dataset is labelled can be cleanly handled.3 We demonstrate this ability in the synthetic experiments
presented in Section 5.

5. Experiments

We performed experiments in the following environments.

• Pendulum Environment: For the pendulum environment depicted in Figure 3, our dataset
consists of 10000 sequences of length T = 5. We used a 3.14 tanh(θ/3.14) nonlinearity
before rendering the final pendulum images in order to constrain the visual angle of the pen-
dulum to the (−π, π) range, even if the magnitude of θ sporadically exceeds π.

• Blocks Environment: For the second environment we moved a camera in the Unreal-Engine-
based Airsim simulator (Shah et al., 2017) with double-integrator dynamics in x, y and fixed
height z as well as fixed camera heading. The goal in this problem is to learn a mapping from

2. Current state of the art variational autoencoders such as VQ-VAE (van den Oord et al., 2017) and VDVAE (Child,
2020) use discrete logistic distribution mixtures parameterizations for pθ(x

(j)
t |zt). We use a diagonal normal distri-

bution in our experiments since it is straightforward to implement and corresponds directly to a mean-square-error
loss term in the resulting ELBO while still producing good results. We leave the problem of tuning this model for
better performance to future work.

3. If C(j) is fixed, the prior pθ(z) should be chosen to be consistent with the true distribution pD(C(j)z).
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Figure 3: Reconstructions for three test trajectories from each of the pendulum, Blocks, and Zhangjiajie
environments under fixed ψ. We speculate that the reconstructions for the Zhangjiajie environment are worse
due to the feature-rich environment and dynamic fog effects present. The complex cloud patterns in the
Blocks environment demonstrate a similar blurring effect.

camera images to (x, y)-coordinates, a task analogous, but not equivalent to, visual-inertial-
odometry (VIO). We used a dataset of size 10000 and trajectory length T = 4 in the ”Blocks”
Airsim environment.

• Zhangjiajie Environment: We additionally created a third dataset with the same double-
integrator dynamics as the Blocks dataset, set in the ”Zhangjiajie” Airsim environment. The
Blocks and Zhangjiajie environments are both visualized in Fig 3. The Zhangjiajie envi-
ronment is much more complex than the pendulum or block environments and we perform
correspondingly worse on this dataset.

We primarily consider the case where the latent state dynamics parameters ψ are known, and
seek to learn the model parameters θ, ϕ. We have found that simultaneously optimizing over ψ, θ, ϕ
is difficult due to the tendency for the state transition matrix A to degenerate and cause posterior
collapse. We hypothesize that prior work (Karl et al., 2017; Krishnan et al., 2016, 2015; Hafner
et al., 2019, 2020) does not suffer from this issue since the estimates of the initial state z1 are made
independently of the dynamics parameters, whereas we model z1 as dependent on z2:T and the
system dynamics. In practice the collapse of qϕ(zt) can be avoided through the introduction of a
direct linear state observation model.

5.1. Qualitative Results

The trained qϕ(zt|xt) models and corresponding filter covariances visualized in Figure 4 for the
pendulum environment demonstrate the ability to learn independence of the image observations and
the hidden state consistent with a given dynamics model, as well as the ability to approximately
recover the true underlying state simply by matching the prior pθ(z1). In Figure 3 we additionally
show that the reconstructions of the samples from the smoothing distribution qϕ(z1:T |x1:T , u1:T )
visualize the same dynamics as the sample image sequence.

9
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(a) Image-based inference using pixel data only. (b) Image-based inference with direct θ observa-
tions at training-time.

Figure 4: With fixed dynamics parameters ψ and setting pθ(z1) = pD(z1), we demonstrate (a) the ability to
learn a reasonable filter for θ, θ̇ from image observations alone purely through matching the pθ(z1) prior and
(b) higher accuracy filtering with additional linear measurement given by x(2)t = θt at training time

Supervision None Partial Full

ψ fixed ψ unknown ψ fixed ψ unknown ψ fixed ψ unknown
Pendulum 0.0458 0.558* 0.000452 0.000369 0.000211 0.000368
Blocks 0.244 9.715* 0.00292 0.00488 0.00193 0.00230
Zhangjiajie 2.308 6.186* 0.0519 0.137 0.0089 0.0413

Table 1: The mean squared position/angle error between the filtering posterior mean and the ground truth for
different models on extended trajectories of length 200. For models where ψ is optimized, we use the learned
ψ to evaluate the filter. (*) Note that these models are all degenerate.

5.2. Partial State Supervision

An advantage of our approach over prior work is the ability to use a subset of the training-time
observations without compromising the correctness of the learned model. By introducing a direct
linear measurement for a subset of the state components, we can perform partial state supervision.
We consider the partially supervised setting with measurements x(j)t = θ and x(j)t =

[
x y

]
for the

pendulum and Airsim environments, respectively, as well as the fully supervised setting with mea-

surements x(j)t =
[
θ θ̇

]⊤
and x(j)t =

[
x y ẋ ẏ

]⊤
for the pendulum and Airsim environments,

respectively. In all cases, we set the measurement noise covariance Σx = 0.05I . As shown in Table
1, using even partial supervision dramatically reduces the filtering error. This improvement is also
reflected in the better latent space structures visualized in Figure 6, where the partially supervised
models have a scale more similar to that of the true states (in this case a θ range of (−π, π) and an
x, y range of (−4, 4) for the pendulum and Blocks environments respectively). The effect of the
improved latent state structure is also evident in the more accurate filtering trajectories shown in 5.

10
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Figure 5: Filtering trajectories over T = 100 time
steps in the Blocks environment for several different
training configurations. Only pixels are used by the
filter.

(a) (b)

(c) (d)

Figure 6: Visualizations of the latent space for the
pendulum, (a) using only image data and (b) par-
tially supervised, as well as the x, y of the Block
environment, (c) from images and (d) partially su-
pervised. Note that latent state spaces for partially
supervised models are more consistent with the true
scale in θ and x, y of (−π, π) and (−4, 4) respec-
tively.

5.3. Extended Trajectory Experiments

To show that the resulting models learn a global state suitable for filtering on real-time systems,
we considered the effect of evaluating the trained filtering model qϕ(zt|X1:t, u1:t) on trajectories of
length T ′ = 200 compared to our training time trajectory length of T = 4 and T = 5 for the Airsim
and Pendulum environments respectively. Table 1 and Figure 5 demonstrate accurate filtering on
the extended trajectories, even with unknown ψ given at least partial supervision. The minimal
degredation under unknown ψ given supervision is notable as it suggests proper inference of the
hidden state dynamics.

5.4. Implementation Details

All experiments were performed using Jax (Bradbury et al., 2018) in conjunction with Haiku (Hen-
nigan et al., 2020) and Optax (Hessel et al., 2020). The code for generating the datasets and training
the corresponding models is available online. 4

For the nonlinear models described in §4.1.1, we used a modified version of the DCGAN (Rad-
ford et al., 2015) discriminator and generator architectures for the encoder and decoder networks
respectively. For the encoder, we used an output dimensionality of 32 for the DCGAN discrimina-
tor and fed this into 3 x GELU (Hendrycks and Gimpel, 2020) activation + Linear layers (with 32
hidden variables) layers before reshaping the final output to be the correct shape for rh. To ensure
training stability of the resulting model under Assumption 3.1, qϕ(zt|x

(j)
t )/pθ(zt) must be propor-

4. The codebase for these experiments is available at
https://github.com/pfrommerd/variational_state_space_models
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tional to a valid probability distribution. Therefore we must enforce that rH(xt)−1 − Σ−1
z ⪰ 0 for

all xt. In our implementation for simplicity we parameterize rH(xt)−1 by the constant function
(L⊤L+ ϵI)−1 +Σ−1

z for a learned matrix L ∈ Rn×n and ϵ = 0.0001.

6. Conclusion

We introduced VSSF, a new family of VAE-based models that learn low dimensional state space
representations and dynamics from high dimensional observation sequences, enabling real-time fil-
tering over the latent state. Future work will look to extend the approach to beyond globally linear
latent state space dynamics.
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Appendix A. Supplementary Proofs

A.1. Evidence Lower Bound

We use the same general ELBO structure as Kingma and Welling (2014), adapted for our problem
domain. For completeness we reproduce the derivation of the ELBO below.

Proposition 1 The Evidence Lower Bound L(θ, ϕ, ψ,X1:T , u1:T−1) ≤ log pθ,ψ(X1:T |u1:T−1) given
by

L(θ, ϕ, ψ,X1:T , u1:T−1) = log pθ,ψ(X1:T |u1:T−1)−G,

where G = DKL(qϕ,ψ(z1:T |X1:T , u1:T−1)||pθ,ψ(z1:T |X1:T , u1:T−1)) can be written

L(θ, ϕ, ψ,X1:T , u1:T−1) = −DKL(qϕ,ψ(z1:T |X1:T , u1:T−1)||pθ,ψ(z1:T |u1:T−1)))

+ Eqϕ,ψ(z1:T |X1:T ,u1:T−1)[log pθ,ψ(X1:T |z1:T )].

Proof. Using Eqϕ,ψ as shorthand for Eqϕ,ψ(z1:T |X1:T ,u1:T−1).

L(θ, ϕ, ψ,X1:T , u1:T−1) = −DKL(qϕ,ψ(z1:T |X1:T , u1:T−1)||pθ,ψ(z1:T |X1:T , u1:T−1))

+ log pθ,ψ(X1:T |u1:T−1)

= Eqϕ,ψ [− log qϕ,ψ(z1:T |X1:T , u1:T−1) + log pθ,ψ(X1:T |u1:T−1)

+ log pθ,ψ(z1:T |X1:T , u1:T−1)]

= Eqϕ,ψ [− log qϕ,ψ(z1:T |X1:T , u1:T−1) + log pθ,ψ(z1:T ,X1:T |u1:T−1)]

= Eqϕ,ψ [− log qϕ,ψ(z1:T |X1:T , u1:T−1) + log pθ,ψ(z1:T |u1:T−1)

+ log pθ,ψ(X1:T |z1:T−1)]

= −DKL(qϕ,ψ(z1:T |X1:T , u1:T−1)||pθ,ψ(z1:T |u1:T−1)] + Eqϕ,ψ [log pθ,ψ(X1:T |z1:T−1)]

A.2. Factorization of q(zt|zt+1,X1:t, u1:t)

The factorization of q(zt|zt+1,X1:t, u1:t) follows from a straightforward application of Bayes’ rule.

q(zt|zt+1, X1:t, u1:t) =
q(zt+1|zt,X1:t, u1:t)q(zt|X1:t, u1:t)

q(zt+1|X1:t, u1:t)

Since
∫
q(zt|zt+1, X1:t, u1:t)dzt = 1, the denominator q(zt+1|X1:t, u1:t) is just a normalization

constant. Therefore

q(zt|zt+1, X1:t, u1:t) ∝ q(zt+1|zt, u1:t)q(zt|X1:t, u1:t)

A.3. Proof of Correctness for Using the Modified Prior

Theorem 2 Provided Assumption 3.1 holds, maximizing the ELBO (3) over pD(X1:T |u1:T−1) un-
der the modification that qθ,ψ(zt) := pθ,ψ(zt) in the posterior update equation (7),

qϕ,ψ(zt|X1:t, u1:t−1) ∝ qϕ,ψ(zt|X1:t−1, u1:t−1)

k∏
j=1

qϕ(zt|X
(j)
t )

qϕ,ψ(zt)
,

is equivalent to maximizing the original ELBO over pD(X1:T |u1:T−1).

15



L-VSSF

Proof. Let qϕ,ψ(z1:T |X1:T , u1:T−1) denote the smoothing distribution qϕ,ψ(z1:T |X1:T , u1:T−1) as
described in §3 with qϕ,ψ(zt) replaced by pθ,ψ(zt) in Equation (7) and L(ϕ, θ, ψ,X1:T , u1:T−1)
denote the resulting modified ELBO.

First we show any optimal θ̂, ψ̂, ϕ̂ that maximizes the true ELBO EX1:T ,u1:T−1
L(·,X1:T , u1:T−1)

is an optimal solution for the modified ELBO EX1:T ,u1:T−1
L(·,X1:T , u1:T−1). For notational brevity

we will omit expectations over X1:T , u1:T−1.
Note that under Assumption 3.1, for parameters ϕ̂, ψ̂ maximizing the true ELBO, the latent pri-

ors of the inference and generative distributions are equivalent, i.e qϕ̂,ψ̂(zt) = pθ,ψ(zt). Therefore

for any optimal ϕ̂, ψ̂ for the original ELBO, the modified and unmodified inference distributions are
the same, i.e qϕ̂,ψ̂(z1:T |X1:T , u1:T−1) = qϕ̂,ψ̂(z1:T |X1:T , u1:T−1). Since the modified ELBO is given
by

L(ϕ, θ, ψ,X1:T , u1:T−1) = log pθ,ψ(X1:T |u1:T−1)

−DKL(qϕ,ψ(z1:T |X1:T , u1:T−1) || pθ,ψ(z1:T |X1:T , u1:T−1)),

under optimal ϕ̂, ψ̂, θ̂ for L, the modified ELBO becomes

L(ϕ̂, θ̂, ψ̂,X1:T , u1:T−1) = log pθ̂,ψ̂(X1:T |u1:T−1)

−DKL(qϕ̂,ψ̂(z1:T |X1:T , u1:T−1) || pθ̂,ψ̂(z1:T |X1:T , u1:T−1)).

By Assumption 3.1 the KL divergence term is zero and θ̂, ψ̂ maximize log pθ̂,ψ̂(X1:T , u1:T−1), so

ϕ̂, ψ̂, θ̂ must also maximize L.
Now consider any θ, ϕ, ψ that maximize L. By the existence of θ̂, ϕ̂, ψ̂, in order for θ, ϕ, ψ to

maximize L, it must be that

L(ϕ, θ, ψ,X1:T , u1:T−1) ≥ L(ϕ̂, θ̂, ψ̂,X1:T , u1:T−1) = log pθ̂,ψ̂(X1:T |u1:T−1).

Note that θ̂, ψ̂ maximize pθ,ψ(X1:T |u1:T−1). Since the KL divergence is non-negative this implies
that

log pθ,ψ(X1:T |u1:T−1) = log pθ̂,ψ̂(X1:T |u1:T−1),

and

ess sup
X1:T ,u1:T−1∼pD(D)

DKL(qϕ,ψ(z1:T |X1:T , u1:T−1) || pθ,ψ(z1:T |X1:T , u1:T−1)) = 0

Therefore the inferred latent state prior matches the generative latent state prior, i.e qϕ,ψ(zt) =

pθ,ψ(zt), and consequently qϕ,ψ(z1:T |X1:T , u1:T−1) = qϕ,ψ(z1:T |X1:T , u1:T−1), implying that θ, ϕ, ψ
also maximize the true ELBO.

A.4. Correctness of learned filter q(zt|X1:t, u1:t−1) and inference model q(zt|x(j)t )

Assumption 3.1 guarantees that parameters θ̂, ϕ̂, ψ̂ which maximize EX1:T ,u1:T−1
L(·,X1:T , u1:T−1)

parameterize the proper smoothing inference distribution, i.e for all X1:T , u1:T−1 ∼ pD(X1:T , u1:T−1),

qϕ̂,ψ̂(z1:T |X1:T , u1:T−1) = pθ̂,ψ̂(z1:T |X1:T , u1:T−1).

This is not necessarily sufficient to guarantee that either qϕ̂,ψ̂(zt|X1:t, u1:t−1) = pθ̂,ψ̂(zt|X1:t, u1:t−1)

or qϕ̂,ψ̂(zt|x
(j)
t ) = pθ̂(zt|x

(j)
t ) everywhere.

In order for the inferred filtering distribution to satisfy qϕ̂,ψ̂(zt|X1:t, u1:t−1) = pθ̂,ψ̂(zt|X1:t, u1:t−1),
we must additionally have that the distribution qψ(zt+1|zt, ut) used in the time-reversed decompo-
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sition (4) satisfies (i) the dynamics model used by the inference distribution qϕ,ψ(z1:T |X1:T , u1:T−1)
and the prior pθ,ψ(z1:T , u1:T−1) must be the same such that qψ(zt+1|zt, ut) = pψ(zt+1|zt, ut)
and (ii) qψ(zt+1|zt, ut) must be nonzero for all zt, zt+1, ut. We satisfy (i) by explicitly setting
qψ(zt+1|zt, ut) = pψ(zt+1|zt, ut) in our decomposition given in §3 and note that (ii) is satisfied by
the multivariate Gaussian parameterization for L-VSSF given in §4. Under both of these conditions

qϕ̂,ψ̂(z1:T |X1:T , u1:T−1) = pθ̂,ψ̂(z1:T |X1:T , u1:T−1).

Using equality, under the reverse decomposition given by Equation (5)

=⇒ qϕ̂,ψ̂(zt|zt+1,X1:t, u1:t) = pθ̂,ψ̂(zt|zt+1,X1:t, u1:t) ∀ t ∈ [0, T ]

=⇒ qψ̂(zt+1|zt, ut)qϕ̂,ψ̂(zt|X1:t, u1:t−1) ∝ pψ̂(zt+1|zt, ut)pθ̂,ψ̂(zt|X1:t, u1:t−1) ∀ t ∈ [0, T ].

Using conditions (i) and (ii) we can conclude that the filtering distributions must be identical for all
t

=⇒ qϕ̂,ψ̂(zt|X1:t, u1:t−1) = pθ̂,ψ̂(zt|X1:t, u1:t−1) ∀ t ∈ [0, T ]. (9)

It remains to be shown that qϕ̂(zt|x
(j)
t ) satisfy qϕ̂(zt|x

(j)
t ) = pθ̂(zt|x

(j)
t ). From Equations (7), (9)

and Assumption 3.1 it follows that
k∏
j=1

qϕ̂(zt|x
(j)
t ) =

k∏
j=1

pθ̂(zt|x
(j)
t ) (10)

Provided that (iii) qϕ̂(zt|x
(j)
t ) is always nonzero and (iv) for all k′ > 1

k∏
j=1,j ̸=k′

qϕ̂(zt|x
(j)
t ) =

k∏
j=1,j ̸=k′

pθ̂(zt|x
(j)
t )

it follows directly that qϕ̂(zt|x
(j)
t ) = pθ̂(zt|x

(j)
t ).

For L-VSSF, (iii) is satisfied by the choice of multivariate Gaussian distributions and (iv) is
satisfied if k − 1 of the observation models satisfy qϕ(zt|x

(j)
t ) = pθ(zt|x

(j)
t ). This holds for the

linear observation model given in §4.1.2 and (iv) holds for all experiments run in §5.
We note that it is also possible to satisfy (iv) by maximizing an objective function given by the

ELBO for the full distribution log p(X1:T |u1:t−1), in addition to an ELBO for
k∑

k′=2

log p({{x(j)t }kj=1,j ̸=k′}Tt=1|u1:t−1),

i.e by inferring both the full filtering distribution, as well as each filter where the observation j = k′

has been removed. We leave experimental verification of this approach as a matter for future work.
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A.5. Derivation of q(zt|zt+1, X1:t, u1:t) for L-VSSF

Theorem 3 For the linear dynamics formulation in Section 4 we have qφ,ψ(zt|zt+1, X1:t, u1:t) =
N (ℓt, Lt) where

L−1
t = P−1

t|t +A⊤Σ−1
w A

L−1
t ℓt = A⊤Σ−1

w (P−1
t|t −But) + P−1

t|t pt|t

Proof. From Equation (5) it follows

qϕ,ψ(zt|zt+1,X1:t, u1:t) ∝ qψ(zt+1|zt, ut)qϕ,ψ(zt|X1:t, u1:t−1)

∝ N (zt+1, Azt +But,Σw)N (zt, pt|t, Pt|t)

Where N (x, µ,Σ) denotes the multivariate normal density function with mean µ and covariance
matrix Σ evaluated at x. Since

N (zt+1, Azt +But,Σw) ∝ e(zt+1−(Azt+But))⊤Σ−1
w (zt+1−(Azt+But))

∝ e(A
−1zt+1−zt+A−1But))⊤A⊤Σ−1

w A(A−1zt+1−zt+A−1But)

Therefore N (zt+1, Azt +But,Σw) ∝ N (zt, A
−1zt+1 −A−1But, (A

−1)⊤ΣwA
−1). Consequently

qϕ,ψ(zt|zt+1,X1:t, u1:t) ∝ N (zt, A
−1zt+1 −A−1But, A

⊤ΣwA)N (zt, pt|t, Pt|t)

For the product of two multivariate normal density functions g(x) = N (x, a,A)N (x, b,B) we can
write g(x) ∝ N (x, c, C) where C−1 = A−1 + B−1, C−1c = A−1a + B−1b (Bromiley, 2003). It
follows directly that

qϕ,ψ(zt|zt+1,X1:t, u1:t) ∝ N (zt, ℓt, Lt)

Where ℓt, Lt are defined as above. Because qϕ,ψ(zt|zt+1,X1:t, u1:t) is a distribution over zt, this is
in fact an equality, completing the proof.
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